
DESIGN OF REAL-TIME AUTOMATION SYSTEMS USING ARCHITECTURE

DESCRIPTION LANGUAGES

Ricardo Bedin França∗, Daniel Rech Gobbi∗, Jean-Marie Farines∗, Jean-Paul Bodeveix†,

Leandro Buss Becker∗, Mamoun Filali Amine†

∗Departamento de Automação e Sistemas - DAS
Universidade Federal de Santa Catarina - UFSC - Florianópolis, Brasil

†Institut de Recherche de Toulouse - IRIT - Toulouse, France

Emails: rbedin@das.ufsc.br, gobbi@das.ufsc.br, farines@das.ufsc.br, bodeveix@irit.fr,

lbecker@das.ufsc.br, filali@irit.fr

Abstract— This paper presents a component-based design methodology for real-time embedded systems,
particularly well suited if they are complex and critical. The architecture description language AADL is the basis
of this methodology. It constitutes an alternative to other modeling languages such as UML to represent all the
system aspects, including its funcional/non-funcional features and platform constraints. The paper presents the
main characteristics of the AADL language and shows its utilization in a case study on an autonomous vehicle
control system. Next, the use of this model to verify desired system properties is also discussed.

Keywords— Critical Systems, Real-time, Programming, Design Methodology

Resumo— Este artigo apresenta uma metodologia baseado em componentes para desenvolver sistemas embar-
cados de tempo real, em particular quando se caracterizam pela sua complexidade e criticidade. A linguagem de
descrição de arquitetura AADL é escolhida como alternativa de destaque a outras linguagens de modelagem como
UML, pela sua capacidade para representar todos os aspectos do sistema com suas caracteristicas funcionais e
não-funcionais e com as restrições da plataforma. Este artigo apresenta as principais caracteristicas da linguagem
AADL e mostra sua utilização num estudo de caso de um sistema de controle de véıculo autônomo. A seguir, é
também discutido o uso deste modelo para a verificação das propriedades desejadas do sistema.

Keywords— Sistemas Cŕıticos, Tempo Real, Programação, Metodologia de Desenvolvimento

1 Introduction

Critical automation systems are those systems in
charge of control tasks requiring a high level of re-
liability, given that failures in such systems may
lead to serious damage. Examples of such systems
include avionics and spacial applications, satellite
control, robotics, autonomous vehicles, and other
ones. Normally these systems are also categorized
as hard real-time, given the imposed time con-
straints. Moreover, they can also be considered
as embedded systems, since they are composed of
dedicated hardware and software co-located with
the equipment under control.

Model-based techniques and tools have
become popular to describe complex archi-
tectures including platform constraints and
functional/non-functional requirements. A model
is defined as a collection of all the artifacts that
describe the system. The approach called model-
driven development (MDD) (Selic, 2003), which is
very popular for developing traditional computing
systems, is now also used for embedded systems
design.

Generally, MDD is a methodology for address-
ing complex development challenges by dealing
with complexity through abstraction. Using this
technique, complex systems are modeled at differ-
ent levels of specificity. As the development pro-
ceeds, the model undergoes a series of transfor-
mations, with each transformation adding levels

of specificity and detail. For the development of
complex systems, MDD begins with the black-box
specification of the system and, through a rigorous
process of transformation, creates a model of the
system; this model is ultimately implemented with
tested system components. SysML1 and UML
(Booch et al., 1999) are examples of modeling lan-
guages that are currently used with MDD.

However, a lot of designers and researchers
consider that these languages are not sufficiently
well adapted to MDD methodology. The main ar-
guments are: the duality among UML bottom-up
approach and MDD top-down approach, the lack
of abstractions to represent hardware and software
architecture features, the non-hierarchical and in-
formal relationship among the various diagrams,
and the lack of refinement techniques.

Another problem about using UML and
SysML languages is that they fail on providing
a model from which the designer is able to verify
functional and non-functional requirements such
as time, safety, and reliability. To allow a more
rigorous specification, formal modeling languages
are needed.

In opposite, the Architecture Description
Languages (ADLs) are well adapted to facilitate
the design of real-time embedded systems, fol-
lowing a component system engineering approach
with similarity of treatment for hardware and soft-

1Available at http://www.sysml.org



ware and a development process based on succes-
sive refinement in various abstraction levels.

Moreover, ADLs with formal extensions are a
proper solution to address at the same time as-
pects like component building, model refinement,
constraint satisfaction, and property verification.

This paper presents and discuss the use of
an ADL to program critical automation systems.
The reminder parts of the paper are organized as
follows: section 2 presents an overview of the Ar-
chitecture Analysis and Design Language - AADL;
section 3 presents tools which supports AADL
specifications; section 4 presents a case study that
consists in the design of an autonomous vehicle
control system, and discuss the proposed solution;
finally section 5 presents the obtained conclusions.

2 Architecture Analysis and Design

Language - AADL

2.1 Architecture Description Languages

Systems architecture is defined as the structure
of the components of a system and their interac-
tions. This concept can also mean guidelines and
constraints which govern the system design and
evolution over time (Garlan and Perry, 1995).

The system architecture has several roles in
the system development (Clements, 1996), being a
solid basis for communication among different de-
signers, a blueprint or a pattern of development,
and enforcing design decisions made in the begin-
ning of the development.

The Architecture Description Languages
(ADLs) have been evolved as a consequence of the
systems architecture concepts.

A fairly high number of ADLs have been de-
veloped and tested to try and fulfill the needs of
developers, and the scope of each language may
vary. Currently there is no consensus about the
optimal compromise between simplicity of repre-
sentation and possibility of thorough architecture
analysis, thus the choice of an ADL depends on
the intention of the designers.

ADLs can be distinguished from some other
languages (programming, module interconnection
simulation, Petri Nets, Statecharts and object-
oriented notations and languages) due to an ex-
plicit representation of connections that is not
present in the other types (Medvidovic and Tay-
lor, 2000). Clements (Clements, 1996) underlines
some other differences:

• ADLs aim to design solutions, while require-
ment languages focuse problem description.

• ADLs avoid a deep level of abstraction, while
programming languages design specific solu-
tions for architecture elements.

• ADLs represent a system by its components,
while modeling languages are most concerned

with the behavior of the system as a whole.

The basic “building blocks” of an ADL are:

Components They are units of computation or
data stores. Usually, ADLs separate compo-
nent types from their instances, thus creat-
ing the possibility of reusing and extending
component types to create multiple imple-
mentations and instances. Each ADL has
its own means to declare the component’s
constraints, as well as its internal behavior.
Components must also be able to contain
other components.

Connections ADLs have explicit connection
declarations which link the components us-
ing their interfaces. Connection constraints
which describe properties, such as the con-
nection protocol, can also be used.

Configurations They are connected graphs of
components and connectors that describe ar-
chitecture. These configurations may be dy-
namic and so ADLs should be capable to rep-
resent dynamic configuration changes.

2.2 An overview of AADL

The Architecture Analysis and Design Language
derived from the MetaH language (Vestal, 1998),
which is aimed to meet the specific requirements of
avionics systems. After years of evolution, AADL
became a standard language for real-time systems
architecture analysis and design. (SAE, 2004).

2.2.1 AADL Specifications

An AADL Specification describes a system archi-
tecture and contains component declarations. It
has access to AADL Global Specifications – pack-
ages and property sets. Packages, much like in
other languages, are global structures that orga-
nize component declarations in separate names-
paces and may be accessed by other AADL spec-
ifications.

The AADL syntax can be extended by li-
braries and subclauses. The annex libraries en-
able designers to create their own sublanguages,
if necessary, and use them in annex subclauses
inside component declarations. Behavioral annex
deals with the system dynamic behavior.

2.2.2 AADL Components

An AADL component is “some hardware or soft-
ware entity that is part of a system being mod-
eled in AADL”. An AADL component is usually
declared in two parts: a type specification, which
describes the component’s interface, and one or
more implementation specifications, that repre-
sent internal aspects of a component.



The component implementations describe the
contents of a component in terms of subcompo-
nents, connections (between subcomponents or
between a subcomponent and a feature of its con-
taining component), operational modes, proper-
ties and flow implementations. The specification
of subcomponents permits to create a hierarchic
architecture.

Most component types contain feature dec-
larations. Features represent the points of com-
munication in a component’s interface, and can
be ports to receive data and/or events, compo-
nent access which may be provided or required
by another component, or subprograms that are
entrypoints to the component. Component types
may have properties that are common to all their
implementations. Also, component types may ex-
tend other component types, refine partially de-
clared features and change property values.

Software Components. The AADL Soft-
ware Components are: data, subprogram, thread,
thread group, and process.

Hardware Components. The AADL Ex-
ecution Platform Components are: processor
(which also contains scheduling and executing
threads), device (which represents an interface
with the environment), memory (which represents
a generic storage unit) and bus (which is responsi-
ble for communication among the other execution
platform components).

Processor and device may have ports and bus
access features. A processor can contain memory
subcomponents or communicate with it through
common bus access. A device cannot contain any
subcomponents.

2.2.3 AADL Connections

The connections in AADL are very simple, and
do not represent high-level components. A con-
nection may be between two ports (data, event
or both) or a data/bus access connection. Ports
are declared with their direction (in, out or both).
Data accesses are declared specifying whether it
is a provided or required data access.

Ports can be organized in port groups in order
to simplify some connections; a port group can be
declared as the inverse of another port group and
then both port groups act like a plug and a socket.

The ports or port groups to be connected , has
to be in the same direction when going through a
hierarchy of components and in inverse direction
when connecting components of the same level.

2.2.4 AADL Configurations

The basic mechanism provided by AADL to rep-
resent configurations of components and connec-
tions is the mode clause. Every component im-
plementation may have operation modes, which

look like finite automaton. One of the possible op-
erational modes of a component must be declared
as initial, and the mode transitions are triggered
by the arrival of events. Implementation decla-
rations, such as subcomponents, connections and
properties, may be mode-dependent.

An architecture is described by the mapping
of sofware components on the execution platform
with the appropriate connections and configura-
tions that will be explained a posteriori.

A system type may contain all kinds of ports,
component access and server subprogram features,
since it may represent a whole abstraction of archi-
tecture. Its implementation can have every AADL
component (hardware and software) as its sub-
components, including other systems.

2.2.5 AADL Constraints

In order to give other characteristics to the com-
ponents and connections, AADL has some prede-
fined properties that can be used both in com-
ponent types and implementations. Connections
may also have properties.

Besides the standard AADL properties, it is
possible for designers to create their own prop-
erties via property sets. Like packages, they are
global AADL declarations that may be accessed
by other specifications. A property has a name,
a value (which can be constant or variable) and
a list of elements (including components, connec-
tions and ports) for which the property may be
used. A property value can be assigned with sev-
eral types of expressions, such as numbers, inter-
vals or references to components.

2.2.6 The AADL Behavioral Annex

The AADL Behavioral Annex 2 was created to
improve some AADL weaknesses, especially con-
cerning the component’s behavior. This annex has
introduced high-level composition concepts and
a richer state representation than the standard
AADL mode automaton.

A very important improvement in this Annex
is the declaration of basic data types and their in-
tegration with the state machines. The types ‘in-
teger’, ‘float’ and ‘boolean’ can also be used from
the package Behavior.

The property set Behavior Properties con-
tains some properties which may be useful in data
types. For example, an array of data can be spec-
ified with the property ‘Multiplicity’ and the ‘Ab-
stract’ property is used in enumerated data type
declarations. These enumerated data types can be
described with each of their possible values being
a feature.

The behavioral specifications are made with
the use of extended automata, which may trigger

2Available at http://gforge.enseeiht.fr/frs/?group_id=37



a transition not only by the reception of an event,
but also by the verification of a boolean expres-
sion, or even both (clause when). A transition may
also trigger one or more actions, assigning val-
ues to variables and sending data and/or events.
Thread states can be also declared as “complete”:
when such a state arrives, the thread is suspended
and waits to be awaken (or, in case of a periodic
thread, wait the next period).

3 A Development Framework

Since the beginning of standardization efforts,
some tools have been developed to work with
AADL. The main tool at the time of this work
is the Open-Source AADL Tool Environment OS-
ATE3, which consists in a series of plug-ins run-
ning under the Eclipse platform4. OSATE permits
creating AADL textual specifications (.aadl files)
and XML-related object models (.aaxl files). It
includes a parser to verify the syntax and some
semantic aspects of the specification, and is able
to translate an .aadl file to a .aaxl one and vice-
versa. OSATE includes also some analysis pro-
totype plug-ins that enable basic model verifica-
tions, such as the binding between threads and
processors, flow checks and resource allocation.

An AADL graphical editor is provided by the
Toolkit in OPen-source for Critical Applications
& SystEms Development TOPCASED5 project,
which is the result of a cooperation among some
French enterprises and academic institutions in-
cluding UFSC. This graphical editor exchanges
AADL specifications with OSATE.

Other tools can be used from the model:
the scheduling analysis tool Cheddar6, which is
able to make schedulability analysis in AADL
specifications; the Architecture Description Sim-
ulation ADeS7 which is an Eclipse plug-in that
runs with OSATE and simulates the execution of
an AADL specification; and presently tools (as
TINA8, ALDEBARAN9, UPPAAL10) which al-
lows a formal verification of properties and are
integrated in the TOPCASED environment.

4 Case Study: AADL Design of an

Autonomous Vehicle Control System

This section presents the AADL design of a real-
time embedded system for movement control of
autonomous vehicle. This system is called Vehi-
cle Control (VC) system. It is considered crit-
ical because some system failure or misfunction

3Available at http://www.aadl.info
4Available at http://www.eclipse.org
5Available at http://www.topcased.org
6Available at http://www.beru.univ-brest.fr
7Available at http://www.axlog.fr/aadl/ades_fr.html
8Available at http://www.laas.fr/TINA
9Available at http://www.inrialpes.fr/vasy/cadp.html

10Available at http://www.uppaal.com

may result in serious injury to people as well as
equipment damage. The VC system is also con-
sidered hard-real time due to time constraints as
imposed computations, communications, and re-
sponse times. Given all these constraints, design-
ing such a system is a difficult and complex task.

The VC system was built using an on-board
computer connected to external devices such as
speed and distance sensors, a compass, a mo-
tor drive, a start/stop switch and a simple user
interface. It also makes use of a pre-developed
Generic Predictive Controler (GPC) for path fol-
lowing control, presented in (Gomes et al., 2006).
The goal of this system is to follow a pre-defined
path avoiding possible obstacles that may appear.
It contains different operational modes, which are
selected by user, according to the desired sys-
tem configuration: it can optimize speed (optimal
mode), save gas consumption (economic mode),
or work in an intermediate configuration (normal
mode).

4.1 General Architecture

The AADL specification consists of a top-down
approach, which starts with the modeling of dif-
ferent types of components that offer a high-level
view of the system architecture. Those compo-
nents are further detailed through their implemen-
tations, where subcomponents and other internal
aspects like concurrency are described. These ba-
sic steps may be done as many times as needed
to attain a sufficiently detailed model according
to its application. This level of the VC system
architecture is presented in Figure 1.

First the computational platform (hardware)
of the vehicle is specified. The VC system is com-
posed by a processor, a memory within the pro-
cessor, and a communication bus. Other hardware
components (compass, speed sensor and so on) are
modeled as AADL devices.

The next step is to describe the software com-
ponents, which consist on a single process com-
posed by threads, that are organized according to
the functionality they are responsible for: path
following control, anti-collision control, path selec-
tion and so on. These AADL thread components
call subprograms whenever needed to perform
computations (lines 19-20 and 23-24 in Figure 4).
For instance, in this case study, a reusable sub-
program implements the generic predictive control
algorithm, GPC.

Then hardware and software components
are assembled in a system component. The
software deployment to the hardware com-
ponents is done by means of the AADL
properties “Actual Processor Binding” and “Ac-
tual Memory Binding”. This is shown in lines 16
to 19 from Figure 2, which contains part of the
AADL specification of the VC system.



Figure 1: VC Component Diagram

The last remark on the general architecture
of the VC system regards the different operation
modes. Properties and mode-dependent declara-
tions can be seen in the component specification,
as shown in Figure 2.

1 system implementation VC. impl
2 subcomponents

3 pa t h f o l l ow c t r : process c on t r o l . impl ;
4 . . .
5 com bus : bus communication ;
6 connections

7 . . .
8 event data port UI . new path −>

9 pa t h f o l l ow c t r . new path ;
10 . . .
11 properties

12 Actua l Proces sor B ind ing => reference

13 proc applies to pa t h f o l l ow c t r ;
14 end VC. impl ;

Figure 2: The VC components in AADL

4.2 Modeling the System Behavior

This section addresses the behavior of the GPC
thread that is part of the path-following controller
component from figure 1, which constitutes the
core of the VC system. The GPC thread is pe-
riodic and contains three states named running,
suspended, and emergency stop. These states are
characterized “complete”, following the definition
presented in section 2.2.6. Figure 3 shows the
extended automaton that represents the behavior
described with AADL in Figure 4.

The GPC thread is created in the running
state. This occurs as soon as a reference path is
set by the user through the interface, and after the
system has been started through the start/stop
switch. The periodic behavior is represented by
the dispatch event, which is triggered every pe-
riod. In each period, the system reads the sen-
sors data, computes the GPC algorithm (based

emergency
stop

running suspended

suspend

restart

error

dispatch

Figure 3: Extended automaton of the GPC thread

on the selected operational mode), and sends the
calculated references to the motor drives. If the
controller is not able to compute these references
within the period, an error event occurs and the
thread state changes to the emergency stop state.

In case of a potential collision, the anti-
collision control thread reports the occurrence to
the GPC thread by means of the suspend event.
The GPC thread is suspended when the running
state is complete. Immediately, the anti-collision
thread takes control of the vehicle. As soon as
this component ends its activity, a restart event
causes the GPC thread to retake control of the
vehicle, returning to the running state.

4.3 Modeling Properties

Properties of the system can be also described in
AADL, before checking their satisfaction on the
system behavior.

The verification process consists in checking
whether the desired system properties are satis-
fied by the behavior description. Properties are
modeled with Temporal Logic, such as the Tem-
poral Logic of Actions (TLA) (Lamport, 2002)
or another one; model-checkers can be used for
verification. If a property is not satisfied, a
counter-example scenario is normally provided by
the model-checker to help the designer to find the
cause of non-satisfaction in the system specifica-
tion and to correct it on the system model. Some
tools used for verification in the TOPCASED con-
text are cited in section 3.

It is also possible to use Temporal Logics (as
TLA) to define the semantic of the AADL spec-
ification. Afterwards, holding the semantic, the
specification can be refined (for example, intro-
ducing operating systems features or platform de-
tails from a more abstract specification), and new
properties can be introduced and checked.

4.4 Discussion

The component system engineering seems a more
natural and clear approach to build automation
embedded systems, considering the engineer view
for system modeling and implementation.

In order to support this component approach,
the Architecture Description Languages (ADLs),
particularly Architecture Analysis and Design
Language (AADL) is a well suited tool to deal
with complex control systems. AADL represents



1 thread GPC computation
2 features

3 suspend : in event port ;
4 . . .
5 properties

6 Dispatch Protoco l => Per i od i c ;
7 SEI : : P r i o r i t y => 1 ;
8 Period => 20 Ms;
9 end GPC computation ;

10
11 thread implementation GPC computation . impl
12 annex behavior specification {∗∗
13 states

14 running : i n i t i a l complete state ;
15 suspended : complete state ;
16 emergency stop : complete state ;
17 transitions

18 running −[ ]→ running { subprograms : :
19 GPC algorithm !
20 ( r e f path−>r path , u or i−>u o r i e n t a t i o n ) ; } ;
21 running −[ e r r o r ? ]→

emergency stop { u speed := 0 ; } ;
22 running −[ suspend ? ]→ suspended { } ;
23 suspended −[ r e s t a r t ? ]→

running { subprograms : : GPC algorithm !
24 ( r e f path−>r path , u or i−>u o r i e n t a t i o n ) ; } ;
25 ∗∗} ;
26 end GPC computation . impl ;

Figure 4: AADL behavior of the GPC thread

systems as a set of components (hardware and
software) that communicate by means of connec-
tors. The main difference between AADL and
other modeling languages lies on its component-
based approach, while the other ones represent
system as a whole.

AADL also allows to model the behavior in
software component as an extended automaton,
with receiving events and boolean expressions to
trigger transitions. This formal behavior represen-
tation and the possibility to model properties with
temporal logic formulas allow to verify the satis-
faction of desired properties by the system and to
correct it, if necessary.

The use of AADL language provides a more
clear view of the system architecture in com-
parison to UML and SysML. It is also better
adapted to MDD system development than these
languages. Following the MDD approach, AADL
uses refinement techniques. Additionally, it pro-
vides a formal model and allows early and life-
cycle tracking of modeling and analysis. AADL
specification is a blueprint for all design phases;
moreover the use of formal models for properties
and behaviors guarantees the correctness and the
coherence of the system building.

5 Conclusions

Powerful design methodologies are required to
help designers to build complex systems, guar-
anteeing implementation correctness with respect
to functional requirements but also non-functional

ones, such as time, safety, reliability, and energy-
economy. At the same time, these methodologies
result in reducing development time and cost.

In this paper, a component-based methodol-
ogy is presented to build complex and critical sys-
tems. This methodology is supported by a well
suited architecture language, AADL. Its behav-
ioral extension (based on extended automata) and
the associated formal representation of properties
(from a temporal logic language) allow to guaran-
tee the correctness of the system conception and
to provide all the system requirements and con-
straints.

An actual application of an autonomous vehi-
cle control system allowed to show the main char-
acteristics of the methodology, particularly with
respect to modeling.

References

Booch, G., Rumbaugh, J. and Jacobson, I. (1999).
The Unified Modeling Language User Guide,
Addison-Wesley.

Clements, P. C. (1996). A Survey of Architecture
Description Languages, IWSSD ’96: Proceed-
ings of the IWSSD ’96, IEEE Press, Wash-
ington, USA, p. 16.

Garlan, D. and Perry, D. E. (1995). Introduction
to the Special Issue on Software Architecture,
IEEE Trans. Soft. Eng. 21(4): 269–274.

Gomes, G. K., Raffo, G. V., Kelber, C. R., Rico, J.
E. N. and Becker, L. B. (2006). Seguimento
de trajetoria de um veiculo mini-baja com
cpbm, Anais do XII Congresso Brasileiro
de Automática, Sociedade Brasileira de Au-
tomática.

Medvidovic, N. and Taylor, R. N. (2000). A
Classification and Comparison Framework
for Software Architecture Description Lan-
guages, IEEE Trans. Soft. Eng. 26(1): 70–93.

SAE (2004). Architecture Analysis & Design Lan-
guage (AADL) AS5506.

Selic, B. (2003). The pragmatics of model-driven
development, IEEE Software 20(5): 19–25.

Lamport, L. (2002). Specifying Systems: The
TLA+ Language and Tools for Hardware and
Software Engineers, Addison-Wesley.

Vestal, S. (1998). MetaH User’s Manual, Honey-
well Technology Drive.


